Gas-Hydrate Research Laboratory

Laboratory Coordinator: Dr. M. K. Das

Associated Faculty Members (if any): P. K. Panigrahi

List of Major Equipment:

- High-pressure, Optically Accessible, Gas Hydrate Diagnostic System
- High Performance Computing System

Brief description of the laboratory:

The research work in lab intends to enhance the gas hydrate formation rate for gas storage and transportation application. A high-pressure pilot-scale reactor to simulate the field scale hydrate formation morphology is developed in the lab. The reactor is made of stainless steel (SS 316) with a maximum design pressure of 180 bar. The cylindrical reactor has an internal diameter of 232 mm and a height of 622 mm with a total volumetric capacity of 25 L. There are four circular optical windows (made of sapphire) with a diameter of 50 mm and a thickness of 25 mm for visual observation of hydrate growth inside the reactor. It is the largest reactor in India dedicated to gas hydrates. Since the hydrate formation is a very slow process and gas storage capacity is also very low. So, a chemical promotor to enhance the hydrate formation rate for a possible industrial application is developed. Doing an experiment in such a large reactor is very difficult because it consumes a lot of time and cost. So, for doing cost effective experiment and shorting the experimental time, a new setup is also developed.

Laboratory research keywords:

Gas hydrate formation, gas storage and transportation, CO₂ sequestration, THF hydrate formation, nanofluid synthesis, sea water desalination, cyclopentane hydrate formation.

Year	Major research and development activity
2020-2021	 Study focuses on the synthesis of a hybrid nanofluid (Cu-Al LDH) and the investigation of its effectiveness as a promoter for CO₂ hydrate formation.
	 The hydrate formation experiments are conducted in a pilot-scale reactor of 25 L volume with a design pressure of 180 bar. The wall temperature of the reactor is set at 2 ° C. The charging of the reactor is carried out in both single and dual stage at the maximum pressure of 30 bar.
	• The presence of LDH nanofluid significantly enhances hydrate kinetics and maximum 176.19% increase in gas consumption compared to pure water.
2019-2020	 Study investigates the influence of surfactant crowding on hydrate growth and detachment of hydrate crystal from the interface in a droplet-based configuration.
	 Experiments are conducted under a constant subcooling of 5 °C

Major Research and Development Contribution of the Laboratory

	using a cyclopentane droplet of volume 5 μL immersed in the water pool.
	 Hydrate growth without surfactant involves lateral growth followed by radial growth and the present of surfactant crowding encourages the radial hydrate growth and impedes lateral hydrate growth.
2018-2019	 Carbon dioxide hydrate formation is carried out to understand the kinetics of CO₂ hydrate formation in porous media for the application of CO₂ sequestration.
	 CO₂ hydrate is formed in silica sand with particle size of 90-500 μm having porosity 38%. The operating temperature and pressure are set at 275.35K and 3.5MPa respectively.
	 The results shows that the final water to hydrate conversion and hydrate saturation are 25.03% and 27.53% respectively at the end of the hydrate formation experiment.
2017-2018	 The objective of this work is to investigate the Tetrahydrofuran(THF) hydrate formation in a cylindrical reactor.
	 THF hydrate experiments are done at two different THF concentrations 19.06% and 30%.
	 The hydrate growth rate is mostly controlled by heat transfer phenomena at 19.06% THF concentration and mass transfer effect is eliminated at that concentration.

Figure #1. Schematic of the experimental setup for the study of the CO_2 hydrate formation process

Figure #2: Visualization of CO2 hydrate growth process at different Cu-Al LDH nanofluid concentrations (c = 0.25, 0.5, and 1.0 wt %) for (Cu2+:Al3+: Na+ = 4:1:4) molar ratio.

Figure#3: Sequence of hydrate formation images at different surfactant concentration

Figure #4: CO₂ hydrate growth visualization during the hydrate formation process

Figure $\#5: \text{CO}_2$ hydrate dissociation visualization with time during the hydrate dissociation process